Licence, Deuxième année, LM256

Devoir 2
esquisse de corrigé

EXERCICE 1- a) avec le changement de variables \(x = r \cos \theta, \ y = \frac{r}{2} \sin \theta \), le domaine \(D \) est transformé en \([0,1] \times [0,2\pi]\) et l’on obtient

\[
I = \frac{1}{2} \int_{0}^{1} r^3 dr \left(\int_{0}^{2\pi} \left(\cos(\theta)^2 - \frac{1}{4} \sin(\theta)^2 \right) d\theta \right).
\]

Comme \(\cos(\theta)^2 - \frac{1}{4} \sin(\theta)^2 = 3/8(1 + \cos(2\theta)) \), on a \(I = \frac{3\pi}{8} \int_{0}^{1} r^3 dr = \frac{3\pi}{32} \).

b) On pose \(\omega = \frac{1}{3} (x^3 dy + y^3 dx) \). Par la formule de Green-Riemann, \(\int_{\partial D} \omega = \int_{D} d\omega \). Mais, \(d\omega = (x^2 - y^2) dx \wedge dy \). Donc, \(I = \int_{\partial D} \omega \). Par ailleurs, le bord de \(D \) se paramètre par \(\theta \rightarrow (\cos \theta, \frac{\sin \theta}{2}) \), où \(\theta \) parcourt \([0,2\pi]\). Donc,

\[
I = \frac{1}{3} \int_{0}^{2\pi} \left(\frac{1}{2} \cos^3(\theta) \cdot \cos \theta + \frac{\sin^3 \theta}{8} \cdot (\sin(\theta)) \right) d\theta = \int_{0}^{2\pi} \left(\frac{\cos^4 \theta}{6} - \frac{\sin^4 \theta}{24} \right) d\theta.
\]

L’intégrale voulue vaut donc \(36I \), soit \(27\pi/8 \).

EXERCICE 2- On utilise le théorème de Fubini, et \(I \) s’écrit

\[
I = \int_{0}^{1} x dx \int_{\sqrt{1-x^2}}^{1} \frac{y dy}{1 + x^2 + y^2} = \frac{1}{2} \int_{0}^{1} x dx \left[\log(1 + x^2 + y^2) \right]_{\sqrt{1-x^2}}^{1} = \frac{1}{2} \int_{0}^{1} x \log \left(1 + \frac{x^2}{2} \right) dx.
\]

Un changement de variables \(u = x^2/2 \) donne ensuite:

\[
I = \frac{1}{2} \int_{0}^{1/2} \log(1 + u) = \left(\frac{3}{4} \log(3/2) - \frac{1}{4} \right).
\]

EXERCICE 3- Tout d’abord, on pose \(D = \{(x, y, z); x^2 + y^2 + z^2 \leq 1, x \geq 0\} \). Par le théorème de Fubini, l’intégrale successive demandée est

\[
\iiint_{D} \frac{dxdydz}{(x^2 + y^2 + z^2)^{1/2}}.
\]

On passe en coordonnées sphériques (par l’application \((r, \theta, \varphi) \rightarrow (x, y, z) \)) avec \(x = r \cos \varphi, \ y = r \cos \theta \sin \varphi, \ z = r \sin \theta \sin \varphi \). La valeur absolue du déterminant de la jacobienne de la transformation est \(r^2 \sin \varphi \). Par la formule de changement de variables, le domaine d’intégration transformé est : \([0,1] \times [0,2\pi] \times [0,\pi/2]\). Sur l’intervalle \([0,\pi/2]\), \(\sin(\varphi) \geq 0 \) et l’on peut enlever la valeur absolue. On obtient donc:

\[
I = \int_{0}^{1} dr \left(\int_{0}^{\pi/2} r^2 \sin \varphi \varphi dr \right) = \int_{0}^{\pi} r dr \left(\int_{0}^{\pi/2} \frac{2}{r} \sin \varphi d\varphi \right) = 2\pi \int_{0}^{1} r dr = \pi.
\]

EXERCICE 4- 1) il suffit de considérer l’application \(\gamma : [0,2\pi] \rightarrow \mathbb{R}^2 \) définie par \(\gamma(\theta) = \left(\cos \frac{\theta}{3}, \sin \frac{\theta}{2} \right) \).

2a) On effectue le changement de variables \(x = \frac{r \cos \theta}{3}, \ y = \frac{r \sin \theta}{2} \). L’intégrale \(I \) à calculer vaut donc

\[
I = \frac{1}{6} \int_{[0,1] \times [0,2\pi]} f'(r^2) r dr d\theta = \frac{\pi}{3} \int_{0}^{1} r f'(r^2) dr = \frac{\pi}{6} (f(1) - f(0)).
\]

2b) Pour l’aire, on pose \(f(x) = x \), d’où \(f'(x) = 1 \), et on obtient \(A(K) = \frac{\pi}{6} \). Pour la deuxième intégrale, on pose \(f(x) = x^3/3 \). D’où

\[
\int_{K} (9x^2 + 4y^2)^2 dx dy = \frac{\pi}{18}.
\]

1On notera que la normalisation diffère légèrement de celle donnée dans le cours; cela ne change toutefois nullement les valeurs absolue du déterminant de la jacobienne.